中关村在线

服务器

英特尔披露至强6处理器针对Meta Llama 3模型的推理性能

近日,Meta重磅推出其80亿和700亿参数的Meta Llama3开源大模型。该模型引入了改进推理等新功能和更多的模型尺寸,并采用全新标记器(Tokenizer),旨在提升编码语言效率并提高模型性能。

在模型发布的第一时间,英特尔即验证了Llama3能够在包括英特尔至强处理器在内的丰富AI产品组合上运行,并披露了即将发布的英特尔至强6性能核处理器(代号为Granite Rapids)针对Meta Llama 3模型的推理性能。

英特尔至强处理器可以满足要求严苛的端到端AI工作负载的需求。以第五代至强处理器为例,每个核心均内置了AMX加速引擎,能够提供出色的AI推理和训练性能。截至目前,该处理器已被众多主流云服务商所采用。不仅如此,至强处理器在进行通用计算时,能够提供更低时延,并能同时处理多种工作负载。

事实上,英特尔一直在持续优化至强平台的大模型推理性能。例如,相较于Llama 2模型的软件,PyTorch及英特尔PyTorch扩展包(Intel Extension for PyTorch)的延迟降低了5倍。这一优化是通过Paged Attention算法和张量并行实现的,这是因为其能够最大化可用算力及内存带宽。下图展示了80亿参数的Meta Lama 3模型在AWS m7i.metal-48x实例上的推理性能,该实例基于第四代英特尔至强可扩展处理器。

图1:AWS实例上Llama 3的下一个Token延迟

不仅如此,英特尔还首次披露了即将发布的产品——英特尔至强6性能核处理器(代号为Granite Rapids)针对Meta Llama 3的性能测试。结果显示,与第四代至强处理器相比,英特尔至强6处理器在80亿参数的Llama 3推理模型的延迟降低了2倍,并且能够以低于100毫秒的token延迟,在单个双路服务器上运行诸如700亿参数的Llama 3这种更大参数的推理模型。

图2:基于英特尔至强6性能核处理器(代号Granite Rapids)的Llama 3下一个Token延迟

考虑到Llama 3具备更高效的编码语言标记器(Tokenizer),测试采用了随机选择的prompt对Llama 3和Llama 2进行快速比较。在prompt相同的情况下,Llama 3所标记的token数量相较Llama 2减少18%。因此,即使80亿参数的Llama 3模型比70亿参数的Llama 2模型参数更高,在AWS m7i.metal-48xl实例上运行BF16推理时,整体prompt的推理时延几乎相同(该评估中,Llama 3比Llama 2快1.04倍)。

展开全文
人赞过该文
内容纠错

相关电商优惠

评论

更多评论
还没有人评论~ 快来抢沙发吧~

读过此文的还读过

点击加载更多

内容相关产品

说点什么吧~ 0

发评论,赚金豆

收藏 0 分享
首页查报价问答论坛下载手机笔记本游戏硬件数码影音家用电器办公打印 更多

更多频道

频道导航
辅助工具